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EXECUTIVE SUMMARY 

 

 

 

One of the NEEM project's goals was to facilitate and bring to the market a mod-

ular software platform for the estimation of EPC labels for buildings supplied with 

district heating. The project has succeeded in this goal by creating a software en-

vironment based on existing energy signature models, expanding them, and ap-

plying the software to Scandinavian buildings in pilot studies. 

 

The models developed were validated on Norwegian school buildings, where a 

high level of control and detailed measurements of the heating system were 

available. After validation, the software was applied to EPC label estimation in 

Denmark on buildings supplied with district heating. Additionally, two pilot studies 

were performed in Norway and Sweden, where the software was applied to 

buildings whose main energy carrier was electricity.  

 

This report highlights substantial challenges faced in the implementation and test-

ing of the software on buildings in the NEEM Hub. As seen by testing it on many 

buildings, the main issues appear to be the requirements for nonlinear optimisa-

tion methods for the models. While the model specification is simple, due to real-

world application, the numerical stability of model optimisation must be ensured 

so that false results are not generated. The necessity exists for C++-based auto-

matic differentiation for the scalability of the application, which also presented 

numerical issues that were overcome. 

 

In conclusion, the project produced scalable modular software that can be ap-

plied to more than district-heating-only applications. In the NEEM projects, this 

software was used to estimate the EPC labels of buildings based on their simu-

lated yearly energy consumption. Additionally, the software performs highly ac-

curate long-term forecasts of energy demand. It also provides a diagnostic over-

view of building characteristics that were used to validate the EPC label and a 

quick overview of the building’s condition. We assess these to be critical condi-

tions for a model to perform the tasks required in NEEM.  
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Chapter 1  

INTRODUCTION  

1.1 NEEM HUB AND NEEM CORE SOLUTION 
 

As part of the Energy Efficient Mortgages Initiative supported by Horizon 2020, the 

Nordic Energy Efficient Mortgage (NEEM) Hub aims to scale up lending to energy 

renovations in the Nordics. To facilitate that, the project has developed a NEEM 

core solution: a three-step guide for banks to deliver customer-specific energy ren-

ovation recommendations to their customers. The solution is designed to simplify 

and automate the process of finding profitable energy renovations for residential 

houses. 

 

The NEEM core solution required building an estimation framework for the energy 

performance of buildings in the Nordic region heated by the common district-heat-

ing system. The goal of the model development was to adapt existing research into 

a largely automated energy efficiency modelling framework. This project pro-

duced an R-based software environment that leverages the modularity of the en-

ergy signature models to forecast the yearly energy consumption of buildings and 

consequently provide them with an EPC label. 

 

 

1.2 ABOUT THIS REPORT  
 

This report describes the foundational models and development of the modular 

software for automated EPC estimation, which is based on hourly energy consump-

tion and weather data. It includes a validation case based on a Norwegian school, 

but the main results from the application of the software are presented in the De-

liverable 5.2 report. It also provides a brief overview of complications with EPC label 

estimation in Denmark, Norway, and Sweden and the general intricacies of auto-

mated nonlinear model estimation. 
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Chapter 2  

CONCEPTUAL UNDERSTANDING AND EXPLANATION 

OF THE MODEL 

2.1 CONCEPTUAL UNDERSTANDING  
 

The current EPC labelling procedure takes place partly through a combination of 

different measurements of the building taken on site (e.g., materials, kind of build-

ing, heating devices) with physical knowledge in an equation that weighs and ac-

counts for all the factors. In the end, this formula produces primary energy demand 

for the building. Each label in the current EPC labelling system consists of a range 

of energy usage per square meter and spans the entire real line, also negative in 

case the building produces more energy than it consumes. 

 

This manual method of classifying buildings with an EPC label is time-consuming, 

expensive, and most importantly uncertain. Such a manual classification cannot 

look at how the building performs as a whole and may significantly misclassify.  

 

As stated by Haldi and Robinson, several studies have shown that the discrepancy 

between actual and estimated energy consumption is significant. One study 

showed that the difference between estimated and actual energy consumption 

can exceed 100% due to occupants’ behaviour (Brohus et al.), and a difference 

of 300% was observed between identical buildings in a study by R.H. Socolow. 

 

The IEA EBC Annex 53 report (Yoshino et al.) states that the energy consumption of 

a building is influenced by six main factors: climate, building envelope character-

istics, building services and energy systems characteristics, building operation and 

maintenance, occupant activities and behaviour, and indoor environmental qual-

ity provided. A similar categorisation is found in Yu et al. 
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As stated above, a major factor in energy performance is occupant behaviour. 

However, only minor focus has been put on data-driven methods where human 

interaction with the building is explicitly taken into account when estimating build-

ings’ thermophysical properties. A building’s heat consumption and dynamics can 

be heavily influenced by occupants’ changing preferences for the indoor environ-

ment, and operational staff’s adjustments of the energy systems might lead to sig-

nificant disturbances when modelling a building’s heat consumption. The research 

done in this project addresses this. 

 

The discrepancy between the prior construction's anticipated energy consumption 

and the actual, however, is not limited to the occupants’ behaviour. Several studies 

have shown that the thermal properties of buildings prescribed in the design and 

reality can vary significantly. In a study from 2011, it was found that 18 out of 18 

(100%) newly built British dwellings had a significantly higher heat-loss coefficient 

than anticipated in the design when it was assessed by co-heating methods on the 

finished building (Wingfield et al.). The Danish Energy Agency also found that 23% 

of the energy performance certificate labels issued in 2018 were misclassified, and 

21% and 31% were misclassified in 2017 and 2016, respectively (Energistyrelsen). 

 

A pertinent example of the physical factors influencing energy consumption in the 

Scandinavian climate is leaky windows. A manual examination of the building may 

have a difficult time identifying a single heavily leaking window. If identified, it is 

nearly impossible to determine the additional heat usage of the leak, i.e., how 

much should this affect the energy performance of the building, and how should it 

affect the EPC label of the building? A building may perform worse than the EPC 

manually established label says. 

 

Consequently, the discrepancies between the intended building energy perfor-

mance and the actual performance are hard to quantify as the effects of building 

characteristics are practically difficult to separate from the occupant-related ef-

fects. 
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In the NEEM project, to estimate energy efficiency, we have employed a type of 

data-driven model that can separate the energy performance of the building from 

the usage to the extent possible using simple scalable meter readings combined 

with weather data.  

 

This report presents the basic concepts and developments on how the steady-state 

energy signature model presented by Rasmussen et al. (2020) was altered and ex-

panded to produce test results for the concrete pilot tests in the NEEM Hub. As these 

data-driven models are proprietary technology of the Technical University of Den-

mark (DTU) pending publication, they will not be explicitly detailed in this report. 

However, their general idea and advantages are outlined below, with a validation 

case. 

 

 

Data-driven models 

 

Data-driven models are mathematical or algorithmic procedures that process 

data to produce a desired result. They are used to create models that describe 

physical, static, or dynamic phenomena, such as the temperature evolution in 

buildings, to predict the electricity load at a substation, and to describe social pat-

terns. These models can calibrate using data and predicting features of the phe-

nomenon. Grey-box models are a combination of white- and black-box models, 

aiming to bridge the gap between the strengths and weaknesses of each. They 

are simple, low-dimensional models that are calibrated to data and capture the 

most important dynamics, leaving out small and often impossible-to-capture dy-

namics that have little influence on the system as a whole. 

White-box models are not data-driven and are based entirely on physical 

knowledge of the system. They tend to be detailed and become large due to the 

equations needed. A direct consequence of these large and coupled models is 

the significant number of parameters appearing. Typically, parameters need to be 

calibrated to the system at hand. However, white-box models tend to be difficult 

to calibrate and match to the given system. 

Black-box models are purely based on data and carry no explicit information 

about physical properties, dynamics, or constraints. This can be an advantage in 

situations where the system is too complex to model by physical knowledge alone. 

However, due to the complete lack of physical knowledge, this kind of model typ-

ically requires large amounts of data to sufficiently learn the dynamics of the phe-

nomenon. Another problem arising from the lack of physical knowledge is black-

box models’ lack of ability to deal with unobserved situations. 

Small, uncapturable dynamics that are left out by grey-box models are not just lost 

in the modelling. Often, these small “disturbances” in the system cause the data to 

become noisy, and these models then characterise the noise and include the de-

scription. The noise description may be useful for determining the uncertainty of the 

predictions made by the model, which in turn is useful for decision-making to know 

how close to constraints the system is allowed to be. 
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The model described in this report and used in the NEEM project is of the grey class; 

it includes interpretable and physical parameters and states and is calibrated using 

data. 

 

2.2 Building energy signature and the digital twin 

1.1.1  

The most intuitive and reliable way to visualise and explain the heat consumption 

of a building is the energy signature approach. The energy signature is the relation-

ship between heat consumption described as a function of the outdoor air tem-

perature.  

 

Figure 1 

Hourly heat consumption against ambient air temperature for a district-heated building in Den-

mark 

 

Source: DTU 

 

Figure 1 above illustrates some typical observations of a Danish building’s heat con-

sumption concerning ambient temperature. The relationship appears rather linear, 

however, at a temperature of 10 degrees Celsius, the relationship transitions to a 

constant.  

 

As such, the energy signature is often approximated as a linear function concern-

ing temperature. However, it can be more aptly described as a sigmoid function 

as the heating capacity of the energy system becomes saturated in extreme con-

ditions. For the sake of simplicity, we assume that the heat consumption relationship 

is linear concerning ambient air temperature. 
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The slope and intercept of even the simple linear approximation carry meaningful 

information about a building's energy performance. For instance, the slope repre-

sents the heat-loss coefficient (HLC) of the building, which describes the rate of 

heat flow through the building’s envelope when a temperature difference exists 

between the indoor air and the outdoor air under steady-state conditions.  

 

During weather-independent periods such as summer, heat consumption is mod-

elled as a constant for buildings without cooling and heat recovery. The change 

point from the weather-dependent or heating period to the weather-independent 

period is described as the base temperature (𝑇𝑏). The best temperature of the 

building is the temperature at which it is in thermal equilibrium with the outside, 

which can be thought of as the operating temperature of the building. Higher 𝑇𝑏 

often means higher heat loss at lower ambient temperatures. 

 

While the relationship between heat consumption and ambient temperature can 

often be described as linear, its relation to other weather phenomena such as wind 

and solar is more complicated. Nevertheless, energy signatures can be used to 

visualise their influence and gain information on the building’s condition. 

 

Figure 2 

Heat curve and its responses to common effect 

 

Source: DTU 

 

Common effects in Figure 2 include increasing standby energy needs of the build-

ing, the effect of wind on heat loss, and solar radiation heating the building. The 

HLC (the slope) and the base temperature (transition point) are highlighted. 

 

Figure 2 above illustrates how the HLC of the building is influenced by the wind and 

how the entire energy signature is shifted by solar radiation. Cold, windy conditions 

increase the HLC, i.e., the building bleeds the heat faster, and solar radiation warms 

the building by entering the house through windowed surfaces and direct induc-

tion into the material of the building. In both cases, the effects can be modelled as 

a function of the wind speed and solar irradiation if one has data on the two vari-

ables. 
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Figure 3 

Effect of changing indoor temperature and internal heat gains on base temperature 

 

Source: DTU 

 

 

The two red sub-plots in Figure 3 show how the effect of changing indoor temper-

ature and internal heat gains alter the base temperature, and the blue sub-plot 

shows how the ventilation rate alters the apparent HLC. For other effects driving 

heat consumption, such as changing indoor temperatures, internal heat gains, and 

ventilation rates, measurements of relevant variables are often unobtainable. 

These are visualised in Figure 4. 

 

Figure 4 

Disturbances and the effect on energy signature 

 

Source: DTU 

 

Figure 4 above shows a conceptual illustration of how two fundamental types of 

disturbances (changing ventilation rate and indoor temperature) affect the en-

ergy signature and consequently how they dictate which model to use. It demon-

strates one of the difficulties in attributing disturbances in heat consumption to ap-

propriate weather effects. The figure displays two identical time series of observed 

heat consumption. In both cases, nine of the observations are assigned to an un-

known disturbance. 
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In the first row of Figure 4, the disturbance is caused by an increased ventilation 

rate and hence increased heat consumption (dark dots). In the second row of the 

figure, the disturbance is caused by increased indoor temperature and hence in-

creased heat consumption (dark dots). In the first scenario, the data can be mod-

elled by including a time-varying HLC or a time-varying base temperature as shown 

in the first row, second and third columns. When choosing the model with a time-

varying HLC, the disturbance can be explained as a single increment in the venti-

lation rate (i.e., a one-time change in the HLC). On the other hand, when choosing 

the model with a time-varying base temperature, the disturbance can only be ex-

plained equally well by several subsequent changes in the base temperature.  

 

Regardless of which approach is correct, assigning the most accurate model for a 

variety of buildings autonomously poses a substantial challenge. This project under-

took and developed several approaches to tackle this, and it was paramount to 

find an accurate model describing the most common disturbances experienced 

by each building. 

 

If the energy signature is well estimated, i.e., the effects of weather phenomena on 

the energy signature are well captured, then the simulation of the building’s total 

energy expenditure over a year becomes trivial. With models that can accurately 

estimate the yearly energy expenditure of a building, the assignment of an EPC 

label becomes an exercise in knowing the correct legislation for each country. 

 

 

2.3 The model developed 

The previous sections covered the modelling approach heuristically. Here, a more 

rigorous introduction to the base model for heat signature is provided. This is fol-

lowed by an introduction to its extensions, where the variations in ventilation rates 

and base temperature shifts are accounted for.  

 

The static model introduced in this section was used as the base model in all pilot 

studies carried out by the NEEM project. Additional testing and validation of ex-

tended models were performed during the Danish pilot studies.  

 

Generally, the static energy signature model consists of two regimes, one when the 

energy demand is weather dependent (when building heating is active) and the 

other when energy demands are constant (when building heating is unnecessary, 

i.e., in summer). The weather-dependent regime (denoted 𝑓(⋅)) is built to capture 

a building’s response to weather changes. The weather-independent regime (de-

noted 𝑔(⋅)) provides the baseline energy needs of the building irrespective of 

weather dependence, such as hot water use, and some electricity draw.  

 

The two regimes allow us to capture useful information about the building, for ex-

ample, exactly how it responds to different weather phenomena and how the un-

derlying energy demand of the building behaves. This can be used for two obvious 

tasks: building diagnostic overviews and building energy demand forecasts on 

large time scales, which is of great interest for this project task. 
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As it is not immediately obvious when building heating is activated, the model is an 

autonomous mixture of the two regimes and transitions between these.  

 

 

2.3.1 The static model 

The static model is the foundation for the model extensions. It is the simplest model 

used as a baseline for estimating the EPC labels in the NEEM project. Also, for the 

Norwegian and Swedish cases, the simple model was exclusively used without 

comparisons to the extended models. 

 

In simple terms, the mathematical model of the heat consumption 𝛷ℎ𝑒𝑎𝑡 can be 

expressed as 
𝜙ℎ𝑒𝑎𝑡 = 𝑚𝑎𝑥[𝑓(⋅), 𝑔(⋅)] 

where 𝑓(⋅) is a function describing the heat consumption during periods with heat 

demand and 𝑔(⋅) is a function describing the heat consumption during periods 

without heat demand. The maximum value is then between the two regimes. The 

dot notation is a placeholder for any explanatory variable used in the functions. 

This is typically the outdoor temperature, wind speed, solar irradiation, or other driv-

ing forces. Together, the functions form the energy signature introduced in the pre-

vious chapter. 

 

For buildings without cooling or heat recovery systems, a constant heat consump-

tion model is used during periods without heat demand. The heat consumption 

model for periods without heat demand, 𝑔(⋅), is therefore defined as 

𝑔 =  𝜙0 + 𝑒 

 

where 𝜙 is the constant daily base heat load related to heat losses from regular 

building use (e.g., hot water) and 𝑒 is i.i.d white noise. 

 

For periods with heating demand, i.e., weather-dependent heat consumption, the 

heat consumption can be derived from the heat balance: 

 

𝜙ℎ𝑒𝑎𝑡  −  𝜙𝑡𝑟 + 𝜙𝑠𝑜𝑙 + 𝜙𝑖𝑛𝑡 − 𝜙𝑣𝑒𝑛𝑡 + 𝜙𝑚𝑎𝑠𝑠 + 𝜙𝑙𝑎𝑡𝑒𝑛𝑡 =  0 

 

where 𝜙ℎ𝑒𝑎𝑡 is the heat consumption, 𝜙𝑡𝑟 is the transmission loss, 𝜙𝑠𝑜𝑙 is the solar gain, 

𝜙𝑖𝑛𝑡 is the internal heat gains, 𝜙𝑣𝑒𝑛𝑡 is the ventilation loss, 𝜙𝑚𝑎𝑠𝑠 is the release of ther-

mal energy stored in the thermal mass and 𝜙𝑙𝑎𝑡𝑒𝑛𝑡 is the energy absorption and 

release due to evaporation and condensation in the thermal zone. 

 

For daily averaged heat consumption and weather data, as used in this study, the 

heat exchange with the internal thermal mass (e.g., building structures and furni-

ture) and the latent heat exchange can be ignored. 

 

The following form is a robust, simple, accurate energy signature approximation: 

 

𝜙ℎ𝑒𝑎𝑡 = 𝐿𝑆𝐸(𝑓(⋅), 𝑔(⋅)) 
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where the function 𝑔(⋅) is defined as above, the function 𝑓(⋅) is defined as 

 
𝑓 = (𝑈𝐴0 + 𝑊𝑠𝑈𝐴𝑤)(𝑇𝑏 − 𝑇𝑎)  + 𝑔𝐴 𝐼𝑔 + 𝑒  

 

the parameter 𝑈𝐴0 is the base HLC, 𝑈𝐴𝑤 is the influence of the wind speed 𝑊𝑠 on 

the HLC, 𝑇𝑎 is the ambient temperature observation, and 𝑇𝑏 is a parameter for base 

temperature. 𝑔𝐴 is the solar gain factor for the global solar irradiation observations 

𝐼𝑔.  

 

𝐿𝑆𝐸(⋅) is the log-sum exponential, which acts as a soft-maximum function describ-

ing the smooth transition between the two heating regimes. It is controlled by some 

hyperparameters that are omitted here for the sake of simplicity. 

 

Weather parameters used in this model are chosen from previous research (Ras-

mussen et al., 2020) that has shown them to be by far the most significant influences 

on buildings’ energy consumption. 

 

It is noteworthy that with the base model, the energy signature of a building is well 

defined, meaning it is possible to accurately forecast long-term energy consump-

tion, which is necessary for EPC label estimation.  

 

Additionally, as will be demonstrated later in this report, the model already pos-

sesses many parameters that quickly provide valuable information about a build-

ing's potential shortcomings. It is obvious that a high 𝑈𝐴𝑤 value indicates a large 

influence of wind on a building’s energy performance. 

 

The most important feature of the static model is that it is modular, so each inter-

action parameter can be easily extended depending on the needed model com-

plexity and data availability.  
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Figure 5 

Wind directions and speed (10 m) at the building site obtained from August 2019 to June 2020 

 

Source: Rasmussen et al., 2021 

 

Darker colours in the density plot in Figure 5 mean more frequent observation, (Ras-

mussen et al., 2021). For example, if the data for wind direction are available, then 

the parameter 𝑊𝑠 can be easily replaced with a function describing a building's 

wind susceptibility in a given direction. This function estimate can later be recon-

structed to show which windows facing a given direction would need further insu-

lation. 

 

2.3.2 Model extensions  

 

As mentioned in the introduction, the NEEM project enabled the testing of novel 

methods for estimating a building's physical thermal properties while synchronously 

estimating time-varying effects caused by human interactions with the building. 

This is done by combining an advanced smooth and nonlinear formulation of the 

steady-state energy signature model known from the literature with a hidden state 

formulated as a random walk to describe the human interaction with the building. 

For the sake of brevity, we omit some mathematical rigour. 

 

Presuming that the indoor temperature, internal heat gains, and ventilation rate 

are not necessarily constant, they can be treated as hidden states evolving. 
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Figure 6 

Two realisations of a random walk of 10,000 steps each, their expected mean and 95% confi-

dence interval 

 

Source: DTU 

 

For the sake of simplicity, we form two models where only a single hidden state may 

be described by a random walk, namely: 

 

1.1 Time-Varying 𝑈𝐴0
𝑡 - allowing the HLC to vary provides insight into the build-

ing’s use and estimates the specific ventilation losses. 

2.1 Time-Varying 𝑇𝑏
𝑡 - allowing the base temperature to vary provides insight 

into the building's internal temperature change, internal heat gains and 

user-driven use of the building. 

 

One approach to estimate the model parameters and hidden state is to use max-

imum likelihood estimation (MLE). The advantage of the MLE method is that it allows 

for estimating parameters related to the noise term, and in this setting the hidden 

state. The outline of the MLE method is omitted here, but details can be found in 

Rasmussen et al. (2020). In practice, the model parameters are found by maximis-

ing the log-likelihood function, and the hidden state is found by Laplace approxi-

mation using R (R core team) and the Template Model Builder (TMB) developed by 

DTU (Kristensen & Nielsen; Thygesen et al.). 

 

Models with hidden and unconstrained states such as those presented here are 

prone to overfitting. To what extent they overfit depends on the data, the estima-

tion approach, and the objective function, which is subject to optimisation to find 

a suitable set of model parameters. To quantify the bias-variance trade-off, the 

models must be cross-validated. These extended models were fitted on buildings 

in the Danish pilot studies. 
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Chapter 3  

VALIDATING THE MODEL FOR NEEM 

This chapter presents a model validation of the static model and the two extended 

models. They were compared and validated on a highly monitored test case to 

verify the models’ fit for the NEEM pilot testing before applying them to the NEEM 

project’s Scandinavian building data. The model selection process we used for the 

buildings in the NEEM project is described in Section 3.2. Both statistical and physical 

validations are included, and how the extended model with time-varying param-

eters can be used for deep building energy performance diagnostics is shown. 

 

3.1 TEST CASE: NORWEGIAN SCHOOLS 
The test case is the newly built Montessori school in Drøbak, Norway. The building is 

a lower secondary school for 60 pupils with two floors and a heated area of ap-

proximately 900 m2. The school was built with the vision to become Norway’s most 

environmentally friendly school. The basis for the energy concept design is a well-

insulated building envelope with minimal heat loss, a very efficient lighting system, 

a high-performance ventilation system, and a ground-source heat pump system 

that provides low-temperature heating in winter and free cooling in summer.  

 

3.2 MODEL VALIDATION  
 

Three sets of models were tested on the school buildings, namely the static model 

(Model 0), the time-varying 𝑈𝐴0
𝑡 model (Model 1) and the time-varying 𝑇𝑏

𝑡 model 

(Model 2), These models were later tested in the Danish pilot study in the NEEM 

project. The prediction errors of the models (Models 0, 1, and 2) and their estimated 

autocorrelation functions are displayed in Figure 7. The autocorrelation function 

describes the time dependence of the data, and in the ideal case, it should be 

equal to 1 lag 0 and close to 0 for the other lags. The residuals are rather small for 

the first year and begin to increase in 2021. This may indicate a systematic or be-

havioural switch in the usage of the building.  

 

Regardless of this change in prediction accuracy, the autocorrelation functions for 

Models 1 and 2 (with time-varying parameters) look significantly better compared 

to the base model (Model 0). The autocorrelation function for time series data says 

something about how much time dependence (or time-related correlation) is pre-

sent in the data. If the amounts of time dependence in the data are significant, this 

means there are dynamics or contributions that we (the modellers) do not capture, 

meaning the model can be improved. Model 0 seems to have systematic errors for 

all time lags, whereas Models 1 and 2 have significant lag dependencies in lag 7 

and 14 only. This could indicate some weekly dynamics these models do not de-

scribe. 
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Figure 7 

Upper: The residuals (prediction errors) of Models 0, 1, and 2 

 

Source: DTU 

 

In Figure 7, in Q4 2019 and Q1 and Q2 2020, Model 0 tends to consistently estimate 

lower energy consumption. Models 1 and 2, in contrast, seem to have smaller re-

siduals and are more evenly spread around 0. These things could indicate that 

Model 1 or 2 better describes the building’s thermal dynamics. 
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Looking at the performance in terms of accuracy, Figure 8 below shows the esti-

mated Root-Mean-Squared-Error (RMSE). A smaller RMSE means better accuracy 

of the model, which is used to choose the best model among Models 0, 1, and 2. 

In the NEEM project, we fit all three models to a building and choose the one that 

has the best performance. 

 

Figure 8 

The performance of the model in terms of RMSE and AIC 

 

Source: DTU 

 

Based on the model evaluation of this real-life case study, the model captures the 

most important drivers and influences that contribute to the heat demand and 

heat usage of the Norwegian building (e.g., wind speed and whether it changes). 

This is indicated by analysing the performance of the model and looking at the 

prediction errors. 

 

While the model behaviour appears to be consistent in this particular school build-

ing, as further validation, the models were tested on Danish buildings heated via 

district heating as part of the NEEM project. 

 

 

3.3 DATA-DRIVEN BUILDING DIAGNOSTICS 
This section outlines some of the results achieved for the validation case. This should 

illustrate how the models are different. In Figure 9, the estimated values of the phys-

ical parameters are shown for the three models. The dots indicate the estimate, 

and the horizontal bars indicate the 95% confidence intervals. For Model 1, the 

base temperature (Tb) is modelled as a random walk and is therefore not shown 

here. For Model 2, the insulation and wind sensitivity (UA0 and UAw) are omitted for 

the same reason. Although there are differences between the estimates, they are 

minor and thus all three models provide equivalent estimates, which validates the 

reliability between the models. We thus believe that the estimated physical param-

eters of the buildings in the NEEM project are reliable.  
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Figure 9 

Estimated physical building parameters by Models 0, 1, and 2 

 

Source: DTU 

 

Additional insights can be achieved using the extended with time-varying 𝑇𝑏
𝑡 – al-

lowing for the base temperature to vary provides insight into the building's internal 

temperature change, internal heat gains and user-driven use of the building and 

time-varying 𝑈𝐴0
𝑡 – allowing for the HLC to vary provides insight into the building’s 

use and estimates the specific ventilation losses. We have omitted this, and we refer 

the reader to future publications about this model. 
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Chapter 4  

ESTIMATING ACTUAL ENERGY EFFICIENCY 

PERFORMANCE 

This section describes the modular software for automated EPC estimation devel-

oped by DTU and how it interacts with Center Denmark’s data. It also provides a 

brief overview of complications with EPC label estimation in each Nordic country, 

as this information is non-trivial to obtain and must be reflected on when assessing 

buildings energy saving potential in each country and the testing results from the 

pilot tests. Lastly, challenges with automated nonlinear model estimation are dis-

cussed. 

 

This project focused on building an estimation framework for the energy perfor-

mance of buildings in the Nordic region heated by the common district-heating 

system. The main pilot studies on district-heated buildings were carried out in Den-

mark. The project carried out additional pilot studies in Norway and Sweden where 

the main heat carrier for buildings was electricity.  

 

 

4.1 METHOD FOR AUTOMATED EPC ESTIMATION  
 

The goal was to adapt the previously showcased research into a largely auto-

mated energy efficiency modelling framework. This project produced an R-based 

software environment that leverages the modularity of the energy signature mod-

els to forecast the yearly energy consumption of buildings and consequently pro-

vide them with an EPC label. The NEEM core solution’s EPC labelling software func-

tionality used in the project, described below in Figure 11, was developed by DTU 

and Center Denmark.  
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Figure 10 

Visualisation of NEEM core solution’s EPC labelling software functionality 

 

Source: NEEM Hub 

 

In the end, the project produced API-compatible software that can be remotely 

requested to estimate an energy signature model for a given household. The en-

ergy signature model provides an EPC label and a diagnostic report. Automated 

software was not available through most of the project’s runtime, and the software 

had to be executed manually, together with much oversight. While the software 

was intended for use with district-heated buildings only, it was also successfully ap-

plied to buildings with electricity as the energy carrier.  

 

 

4.2 THE FOUNDATIONAL CONCEPT FOR EPC LABELS  
 

Center Denmark API wrapper 

Desired 

Model 

DTU diagnostic software 

EPC label 

 

Diagnostic Report 

Building and 

weather data 
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This project focused on EPC label estimation in Denmark, Norway, and Sweden. 

Based on a building's EPC label and other parameters, an evaluation of renovation 

potential was produced. While the EPC label in each country is based on a similar 

foundational concept, the specifics differ greatly and are worth exploring. 

 

The foundational concept for EPC labels is the following: 

 

 𝐸𝑃 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 𝐸𝑛𝑒𝑟𝑔𝑦 𝑆𝑐𝑎𝑙𝑖𝑛𝑔 𝐹𝑎𝑐𝑡𝑜𝑟 ×  
𝑌𝑒𝑎𝑟𝑙𝑦 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

𝐵𝑢𝑖𝑙𝑑𝑖𝑛𝑔 𝐴𝑟𝑒𝑎
 

 

The main component is pertinent to model correctly the yearly energy consump-

tion of a given building. Luckily, this measure is not particularly complicated to 

model. This is because yearly energy consumption can be expressed as a sum of 

smaller daily energy consumption estimates: 

 

𝑌𝑒𝑎𝑟𝑙𝑦 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 =  ∑

365

𝑖=1

𝐷𝑎𝑖𝑙𝑦 𝐸𝑛𝑒𝑟𝑔𝑦 𝑈𝑠𝑒 

 

As long as a given model gives a mean-zero estimate for daily energy consump-

tion, due to the statistical properties, the error in the cumulative yearly measure-

ment will usually be low. Energy signature models developed by DTU are suitable 

for this task.  

 

Figure 11 

Daily average building energy consumption and simulated estimate 

 

Source: NEEM Hub 

 

 

Figure 12 depicts a representative example of the observed energy consumption 

of a building (black) and the simulated estimate (red) by the static energy 
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signature model. This data is from a Danish building used in the NEEM Hub. Note the 

regime switch between the two parts of the model in mid-May, where the mode 

switches from being weather dependent to a constant estimate. As is clear, even 

the static model describes the energy consumption of a given building adequately 

well for the task of estimating yearly energy consumption.  

 

It is worth noting that modelling a building’s energy consumption is a much easier 

task with district-heating data, as it is less prone to bias from utility use from the res-

idents. Nevertheless, this project also attempted to apply the DTU modelling frame-

work in Sweden and Norway on buildings heated via electricity as the mean heat 

carrier. This required more care, which will be covered later in this report. 

 

Lastly, while all countries’ guidelines agree on what yearly energy consumption is, 

they differ in every component in estimating the energy performance (EP) meas-

ure. The following sections provide a brief yet important overview for estimating a 

building’s yearly energy consumption and then specifics of EPC labels in each 

country. This knowledge is important when contextualising the pilot study. The main 

takeaway is that the EPC labels from the three countries are in no way inter-com-

patible, with the Swedish EPC labelling being by far the harshest. 

 

 

4.3 DANISH EPC LABELS 
 

The Danish and Norwegian EPC labels are awarded according to nearly identical 

methodologies. However, the values to which the 𝐸𝑃 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 is compared vary. 

The following section provides a necessary overview and comparison of the label’s 

definitions in the three countries, which in turn influences how recommendations 

for the sale or renovation of the building are given. 

 

4.3.1 EPC label formulas for Denmark 

 

Generally, an EPC label is awarded according to which threshold value the 

𝐸𝑃 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 falls under, subject to area correction. More explicitly, 

 

𝐸𝑃 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 ≤  (𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐸𝑃 +  𝐴𝑟𝑒𝑎 𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑖𝑜𝑛). 

 

The 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 𝐸𝑃 threshold values for Danish buildings can be found in the following 

table (where Area is the useful area of the building in [𝒎𝟐]). 

 

Table 1 

EPC label thresholds for Denmark 

 

 EPC Maximum EP [𝒌𝑾𝒉/(𝒎𝟐𝒚𝒆𝒂𝒓)] Area Correction 

A2020 27  

A2015 30 +1000/𝐴𝑟𝑒𝑎 

A2010 52.5 +1650/𝐴𝑟𝑒𝑎 

B 70 +2200/𝐴𝑟𝑒𝑎 
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C 110 +3200/𝐴𝑟𝑒𝑎 

D 150 +4200/𝐴𝑟𝑒𝑎 

E 190 +5200/𝐴𝑟𝑒𝑎 

F 240 +6500/𝐴𝑟𝑒𝑎 

G ∞  
 

 Source:  DTU 

 

 

 

Additionally, the primary energy factors used to calculate the 𝐸𝑃 𝑚𝑒𝑎𝑠𝑢𝑟𝑒 for Dan-

ish buildings are as follows: 

 

Table 2 

Primary energy factors for Danish buildings 

 

Energy Carrier Primary Energy Factor 

Electricity 1.9 

District Heating 0.85 
 

  Source:  DTU 

 

 

4.4 NORWEGIAN EPC LABELS 
The Norwegian approach is the simplest one considered in this project. It is largely 

similar to the Danish EPC labelling system. However, there is only a single A-stand-

ard, primary energy factors are not used (Brekke et al.) and the values for EP cate-

gories are different. 

 

Table 3 

EPC label thresholds for Norway 

EPC Maximum EP [𝒌𝑾𝒉/(𝒎𝟐𝒚𝒆𝒂𝒓)] Area Correction 

A 95 +800/𝐴𝑟𝑒𝑎 

B 120 +1600/𝐴𝑟𝑒𝑎 

C 145 +2500/𝐴𝑟𝑒𝑎 

D 175 +4100/𝐴𝑟𝑒𝑎 

E 205 +5800/𝐴𝑟𝑒𝑎 

F 250 +8000/𝐴𝑟𝑒𝑎 

G ∞  
 

  Source:  DTU 

 

 

4.5 SWEDISH EPC LABELS 
 

As with the others, the Swedish EPC labels depend on the EP measure. What sets 

them apart is that the EP is compared to that of newly built buildings. For example, 

for newly-built single-family homes as of 26/01/2023, the EP is 90.  
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EPC label categories are defined as a fraction of the required energy perfor-

mance. Concrete thresholds are shown in Table 4.  

 

Table 4 

EPC label thresholds for Sweden 

EPC Fraction Minimum EP Maximum EP 

A 0-50% 0 45 

B 50-75% 45 67.5 

C 75-100% 67.5 90 

D 90-135% 90 121.5 

E 135-180% 121.5 162 

F 180-235% 162 211.5 

G >235% 211.5 ∞ 
 

  Source:  DTU 

 

Some common energy scaling factors are shown in Table 5 below.  

 

Table 5 

Energy scaling factors for Sweden 

Energy Carrier Primary Energy Factor 

Electricity 1.6 

District Heating 1 

Gas 1 
 

  Source:  DTU 

 

As Sweden is a rather large country, across its length the climate shifts toward 

harsher in the north. As such, the yearly energy consumption score must be offset 

by a geographical adjustment factor in the following way: 

 

𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 𝑌𝑒𝑎𝑟𝑙𝑦 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛 =  
𝑌𝑒𝑎𝑟𝑙𝑦 𝐸𝑛𝑒𝑟𝑔𝑦 𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛

𝐺𝑒𝑜𝑔𝑟𝑎𝑝ℎ𝑖𝑐𝑎𝑙 𝐴𝑑𝑗𝑢𝑠𝑡𝑚𝑒𝑛𝑡 𝐹𝑎𝑐𝑡𝑜𝑟
 

 

Some examples of geographical adjustment factors are shown in Table 6. 

 

Table 6 

Geographical adjustment factors for Sweden 

County Municipality Geographical Adjustment  

Factor 

Norrbotten Kiruna 1.9 

Stockholm All Municipalities 1.0 

Skåne Lund 0.9 
 

  Source:  DTU 
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During January 2023, NEEM Hub carried out a pilot study on 12 Swedish private 

family homes. Notable differences between the Swedish system and the other two 

countries are twofold. First, there is no building-area adjustment for the EPC label, 

which generally makes the criteria more stringent. Second, there is a geographical 

adjustment, which this project believes to be a valuable addition. If a building is 

located in a more northern part of the country, given the same modern insulation 

it will still produce a larger power draw. Geographical adjustment facilitated easy 

building comparison between regions. 

 

While the Swedish EPC label system adjustments are welcome, they unfortunately 

make the calculations for savings potential in a building’s renovation more compli-

cated, which was an issue that Copenhagen Economics encountered in the last 

pilot study. 
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Chapter 5  

MODELLING AND SOFTWARE CHALLENGES 

This chapter presents some of the particular challenges encountered in the process 

of estimating data-driven EPC labels for the NEEM project.  

 

5.1 NONLINEAR ESTIMATION PROBLEM 
 

At first glance, the static energy signature model appears to be simple in appear-

ance: a mixture of two semi-linear regimes. However, that is very much not the 

case. Every weather dependency apart from temperature is nonlinear. Coupled 

with hidden-state estimation for the extended models, the problem becomes non-

linear hidden-state estimation that requires nonlinear optimisation and other ma-

chine-learning techniques.  

 

This, of course, was a substantial challenge to overcome as if the models do not 

converge towards true building characteristics, the resulting buildings assessment 

by the NEEM project risks being false. As the goal was to apply the methods in the 

real world using actual customers of Scandinavian banks, the model robustness 

was paramount. The wide-ranging Danish pilot study served to highlight the exist-

ence of numerical edge cases that led to improvements in the optimisation proce-

dure. 

 

The main issue was unforeseen numerical stability issues when using automatic dif-

ferentiation methods for accelerated gradient descent. The current set of solutions 

for these problems is a clever choice of optimisation algorithm, an educated initial 

guess for all parameters coupled with statistical validation of the simulation results 

on training data. However, this still fails in some cases, resulting in the model not 

converging. In those cases, the results are not provided. This challenge was present 

in all three pilot studies. 

 

 

5.2 C++ AND SCALABILITY 
 

For the software to be widely applicable and scalable, it is paramount that the 

model computation be short. In the context of the Danish pilot study, where the 

NEEM project evaluated over 20,000 buildings, the difference in computing time for 

a simple building changing from a minute to a few seconds becomes a difference 

from five hours to two weeks when computing the pilot study results. 

 

For the further large-scale application of the software, it is unfeasible to have a 

model estimation for single buildings last more than a second, so accelerating the 

computation is necessary. However, this comes with numerical stability issues that 

are difficult to account for and catch autonomously. As the software is tested on 

an increasing number of buildings and validated by comparison to other models, 

more errors are caught. This means that the software in its current state requires 
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continuous development. However, most major issues have been removed and 

the software is ready for deployment. 

 

The current implementation of model estimation relies on the open-source R soft-

ware package TMB developed at DTU Aqua. This package allows the user to im-

plement random effect models through simple C++ templates that can take ad-

vantage of the automatic differentiation of the model loss function. This allows for 

highly sped-up optimisation, taking time spent on a single model estimation from 

minutes to seconds.  

 

5.3 HOUSE APPLIANCES, HEAT PUMPS AND ELECTRIC VEHICLES 
 

While the main objective of the project was to develop software to evaluate build-

ings supplied by district heating, the project carried out additional pilot studies on 

buildings where the main energy carrier is electricity, the cases from Norway and 

Sweden. The biggest hindrances in estimating the accurate EP of buildings heated 

by electricity are accounting for home appliances, heat-pump efficiency, and 

electric vehicles. 

 

Generally, the combined energy draw of typical home appliances such as fridges, 

dishwashers, washing machines and televisions is negligible compared to the en-

ergy needed to heat the building through most of the year. This is the case in Nordic 

countries but would be a more substantial consideration in central and southern 

parts of Europe. In the opinion of this project, it is reasonable to include typical 

home appliances in the heating envelope of the building.  

 

What is more difficult to consider is the efficiency of air-to-water or geothermal heat 

pumps that use electricity to heat the building. Every heat pump has a coefficient 

of performance. This coefficient is not known and is subject to change with the 

weather. In cases when the buildings use electricity through heat pumps for heat-

ing, the energy signature model says more about the weather’s influence on the 

heat pump and not the building. While it is generally acceptable to assess buildings 

with heat pumps as a singular entity and assign an EPC label, the model becomes 

less useful in its diagnostic capabilities. 

 

The most disruptive and challenging home appliance to account for when pro-

cessing electricity data is an electric vehicle (EV). 
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Figure 12 

Daily average electricity consumption of a building with an EV over a year  

 

Source: NEEM Hub 

 

Figure 12 depicts observations obtained from the Swedish pilot study carried out by 

the NEEM Hub. The figure shows the daily average energy consumption of a build-

ing heated by electricity paired with an EV charger. With the addition of an EV, the 

daily energy use readings gain a large but consistent variability. If the data are kept 

as is, the energy signature model will be ill-fitted. 
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Figure 13 

False fit of the static energy signature model on the data of a building with an EV 

 

Source: NEEM Hub 

 

Figure 13 depicts data from the same Swedish pilot study as in Figure 13, showing a 

false fit of the energy signature due to the inclusion of an EV in the data. The main 

impact of an EV is in artificially inflating the baseline energy draw of the building. 

This mostly presents itself in a large upward bias in baseline energy consumption, 

removing significance in less significant interactions with the weather (solar, wind) 

and a small bias in response to temperature changes (HLC). 

 

The project produced several ways of dealing with these issues. However, all of 

them are difficult to automate reliably. The best option is to have data available 

directly from the heat source, e.g., district heating or the energy gauge on the pri-

vate heat pump. In that way, the EV and other utilities are not included in the data.  

 

If direct measurements are not an option, energy consumption data with higher 

time resolution (hourly, as opposed to daily) could be manually processed. As EV 

power draw is usually highly pronounced, constant, and can generally be spotted 

by looking at hourly data, with some effort, these observations can be removed 

from the dataset manually.  

 

However, this might not be an option if a country has fixed grid fees to encourage 

people to spread their electricity consumption as evenly as possible throughout the 

day, i.e., hourly electricity overdraw penalties in Norway. In these cases, the smart 

EV charger will spread the draw through many hours, often for 12-hour periods at a 

time. This means that nearly half of the data must be disregarded. 
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In this case, it is possible to resort to the fact that EV charging will have a limited 

biasing effect on a building's response to temperature changes. Few countries 

(such as Sweden) have reference tables for EPC labels based on the HLC of the 

buildings, and thus a crude estimate of EPC labels can still be issued. 

 

 

5.4 DATA SCARCITY 
 

Building energy consumption consists of two regimes, one describing heat con-

sumption during periods of heat demand and one describing heat consumption 

during periods of constant heat consumption (e.g., summer). Therefore, to fit an 

accurate energy signature model, a dataset overlaps periods where both regimes 

are active. However, it is more important that some observations of the weather-

independent regime are present, as their lack can make the model underestimate 

the overall heat consumption.  

 

The section on the performance of extended models highlighted that the models 

require validation datasets to confirm that the models were not over-fitted on the 

training data set and provide an unbiased insight into building heat dynamics. This 

naturally requires more data, which is not always available. Regardless of this, the 

project found that the base static model often describes energy demand suffi-

ciently well with comparatively little data and is always an available option. 
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Chapter 6  

CONCLUSION  

One of the NEEM project's goals was to develop a scalable and modular software 

platform for the estimation of EPC labels for buildings supplied with district heating. 

The project succeeded in this goal by creating a software environment based on 

energy signature models and expanding them. The models that were developed 

as part of this project extract buildings' dependence on the three main weather 

influences, namely temperature, solar radiation, and wind. The extracted infor-

mation on buildings’ heat-demand characteristics can then be used as an initial 

diagnostic of different components of the building and for accurate long-term en-

ergy demand forecasts. The yearly energy demand forecasts are used in the esti-

mation of the EPC label for the building. 

 

Before the models were applied in testing within the NEEM Hub, they were vali-

dated on Norwegian school buildings where great control and detailed measure-

ments of the heating system were available.  

 

After validation, the software was applied to EPC label estimation in Denmark on 

buildings supplied with district heating. Additionally, two pilot studies were per-

formed in Norway and Sweden, where the software was applied to buildings where 

the main energy carrier was electricity. This report highlights the different ap-

proaches to EPC labelling in each country and additional considerations necessary 

when working with electricity data. The results from these cases are presented in 

Deliverable 5.2. 

 

Lastly, the report highlighted substantial challenges it faced in the implementation 

and testing of the software on a large number of buildings. The main issues are the 

requirements for nonlinear optimisation methods for the models, the necessity for 

C++-based automatic differentiation for scalability, the numerical issues present in 

that, and finally, data scarcity. These issues were all tackled and solved during the 

project’s development; however, some are still benefitting from active develop-

ment. 

 

The developed software can solve the basic EPC labelling problem through a data-

driven scalable implementation. Furthermore, it shows how building performance 

characteristics can be estimated in various ways, from simple to detailed building 

diagnostics with time-varying parameters tracking changes over time. This research 

can lead to deep diagnostic applications in future projects. 
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